MNIST Non Balanced
MNIST Non BalancedΒΆ
import torch
import torchvision
import numpy as np
import math
mnist_trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
]))
mnist_testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
]))
## Parameters:
n_epochs = 3
batch_size_train = 10000
batch_size_test = 500
log_interval = 500
train_loader = torch.utils.data.DataLoader(mnist_trainset,batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(mnist_testset,batch_size=batch_size_test, shuffle=False)
import papayaclient
class TheModel(torch.nn.Module):
def __init__(self):
super(TheModel, self).__init__()
self.linear1 = torch.nn.Linear(784, 400)
self.linear2 = torch.nn.Linear(400, 10)
self.relu = torch.nn.ReLU()
def forward(self, x):
x1 = x.flatten(start_dim = 1)
return self.linear2(self.relu(self.linear1(x1)))
clients = []
list_of_data = []
list_of_labels = []
for batchno, (ex_data, ex_labels) in enumerate(train_loader):
list_of_data.append(ex_data)
list_of_labels.append(ex_labels)
data, labels = torch.cat(list_of_data), torch.cat(list_of_labels)
np.random.seed(42)
idx = [0] + sorted(np.random.choice(59999, 5, replace=False)+1) + [60000]
for i in range(6):
ex_data = data[idx[i]:idx[i+1]]
ex_labels = labels[idx[i]:idx[i+1]]
clients.append(papayaclient.PapayaClient(dat = ex_data,
labs = ex_labels,
batch_sz = 500,
num_partners = 5,
model_class = TheModel,
loss_fn = torch.nn.CrossEntropyLoss))
## Train the Nodes
num_epochs_total = 100
num_epochs_per_swap = 5
num_times = (num_epochs_total // num_epochs_per_swap)
for i in range(0, num_times):
for n in clients:
for j in range(0, num_epochs_per_swap):
n.model_train_epoch()
if i > 1 and i < num_times - 1 :
for n in clients:
n.select_partners(3)
for n in clients:
for i in range(0, 4) :
n.update_partner_weights()
n.average_partners()
for c in clients :
print(c.logs['stringy'][99])
node1299epoch 99 loss 0.2979358434677124
node450epoch 99 loss 0.4507386386394501
node1028epoch 99 loss 0.23260848224163055
node4568epoch 99 loss 0.17811667919158936
node54epoch 99 loss 0.24992099404335022
node667epoch 99 loss 0.2253928780555725
accuracies = {}
with torch.no_grad():
for i in clients :
accuracies_node = []
for batchno, (ex_data, ex_labels) in enumerate(test_loader) :
accuracies_node.append(((i.model.forward(ex_data).argmax(dim = 1) == ex_labels).float().mean()).item())
accuracies[i.node_id] = np.array(accuracies_node).mean()
accuracies
{1299: 0.9210999995470047,
450: 0.9191000014543533,
1028: 0.9227999985218048,
4568: 0.9263999938964844,
54: 0.9197999924421311,
667: 0.9217000007629395}